An Application of Reversible-Jump MCMC to Multivariate Spherical Gaussian Mixtures

نویسنده

  • Alan D. Marrs
چکیده

Applications of Gaussian mixture models occur frequently in the fields of statistics and artificial neural networks. One of the key issues arising from any mixture model application is how to estimate the optimum number of mixture components. This paper extends the Reversible-Jump Markov Chain Monte Carlo (MCMC) algorithm to the case of multivariate spherical Gaussian mixtures using a hierarchical prior model. Using this method the number of mixture components is no longer fixed but becomes a parameter of the model which we shall estimate. The Reversible-Jump MCMC algorithm is capable of moving between parameter subspaces which correspond to models with different numbers of mixture components. As a result a sample from the full joint distribution of all unknown model parameters is generated. The technique is then demonstrated on a simulated example and a well known vowel dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Multivariate Gaussian Mixtures with the Re- versible Jump MCMC Algorithm

This paper is a contribution to the methodology of fully Bayesian inference in multivariate Gaussian mixtures using the reversible jump Markov chain Monte Carlo algorithm. To make use of the spectral representation of symmetric positive definite matrix, we decompose covariance matrix into two parts: an eigenvector matrix and an eigenvalue matrix. We focus our attention on a family of multivaria...

متن کامل

On the automatic choice of reversible jumps

The major implementational problem for reversible jump MCMC is that there is commonly no natural way to choose jump proposals since there is no Euclidean structure to guide our choice. In this paper we will consider a mechanism for guiding the proposal choice by analysis of acceptance probabilities for jumps. Essentially the method involves an approximation for the acceptance probability around...

متن کامل

A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data

An R package mixAK is introduced which implements routines for a semiparametric density estimation through normal mixtures using the Markov chain Monte Carlo (MCMC) methodology. Besides producing the MCMC output, the package computes posterior summary statistics for important characteristics of the fitted distribution or computes and visualizes the posterior predictive density. For the estimate...

متن کامل

Fitting Gaussian Mixtures by Automatic RJMCMC CPSC535c Course Project

In this work, I will apply a recently developed automatic reversible jump MCMC algorithm to the problem of fitting a Gaussian mixture model to data. This algorithm, named AutoMix, is due to Hastie [5]. Reversible jump is approriate for this problem, because I will allow the number of mixture components to vary, and will seek to estimate the posterior distribution over both this quantity and the...

متن کامل

Segmentation of color images via reversible jump MCMC sampling

Reversible jump Markov chain Monte Carlo (RJMCMC) is a recent method which makes it possible to construct reversible Markov chain samplers that jump between parameter subspaces of different dimensionality. In this paper, we propose a new RJMCMC sampler for multivariate Gaussian mixture identification and we apply it to color image segmentation. For this purpose, we consider a first order Markov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997